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Abstract. The rolling process mathematical modeling involves nonlinear parameters and
relationships that usually lead to nonlinear equations of difficult numerical solution. Such is
the case of Alexander's model (1972), considered one of the most complete regarding the
rolling theory. For simulation purposes, Alexander's model requires too much computational
time, which prevents its use in on-line control and supervision systems.
In this work, two neural network structures are trained using process and operation data
respectively, generated by Alexander's models. The neural models are validated through
simulation. Finally, the neural network models are used to obtain the sensitivity factors of the
process by differentiating the network outputs.
It is shown that the new neural network representations allow to obtain process equations for
different operation points. Results of the representations are presented.
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1. INTRODUCTION

The existent theoretical models for the rolling process allow to calculate the rolling load
by unit width (P) and torque ( qT ) of non-linear expressions as: Eqs. (1) and (2).

),,,,,,,( REytthhfP fboi µ= (1)

),,,,,,,( REytthhfT fboiq µ= (2)

with =ih input thickness; =oh output thickness; =bt back tension; =ft front tension; =y

average yield stress; =µ friction coefficient; E =Young modulus of the strip; R= roll radius.



It is convenient to have equations to calculate the outgoing thickness and the rolling load,
Eq. (3), in terms of the other parameters. This will permit to analyze the effect of disturbances
in the entry thickness, front or back tensions, average yield stress and friction coefficient on
the rolling load and, therefore, on the outgoing thickness.

,E,R),,t,t,hyW,g,M,= fPh fbiwo µ(),( (3)

where: W = strip width; M = rigidity rolling mill modulus; g =  roll gap.

Equations. (1), (2) and (3) involve non-linear parameters and relationships that usually
lead to non-linear equations of difficult numerical solution. Such is the case of the
Alexander's model (1972), considered as one of the most complete in the rolling theory. For
simulation purposes, Alexander's model requires a significant computational effort, which
prevents its use in on-line control and supervision systems.

In Eqs. (1), (2) and (3), the rolling load value depends on the output thickness value and
vice versa.  Therefore, an "algebraic loop" exists in Eq. (3) that prevents the analytical
calculation of those parameters.

To solve this problem, a numerical solution involving successive iterations can be used.
This procedure may demand a great computational effort in order to calculate the new
operation point when a disturbance takes place in the rolling process. The computational time
varies according to the different operation points. This prevents the use of this type of
numerical solution in on-line control and supervision systems.

Other forms to represent the rolling process use neural networks and sensitivity factors.
In this paper, two neural network representations for the cold rolling process based on

Alexander's model, are presented.
In section 2, the neural network based representation of the rolling process, is presented.

In section 3, the calculation of the sensitivity equations through the differentiation of the
neural network is shown. In section 4, the neural models are validated through simulation.
Finally, conclusions of the representations are discussed.

2. REPRESENTATION OF THE ROLLING PROCESS THROUGH ARTIFICIAL
NEURAL NETWORKS

Artificial neural networks (ANN) have been the focus of great deal of attention during
the last decade, due to their capabilities in solving non-linear problems by learning (Hunt et.
al., 1992 and Sbarbaro-Hofer et.al., 1993). Actually, these nets are presently widely used in
metallurgical process, as in Andersen, et. al. (1992), Smart (1992), Zárate (1998) and Zárate
et. al. (1998a,b).

In this section, two representations for the rolling process (Eqs. (1) and (2)) and rolling
mill operation (Eq. (3)) through ANN, are presented.

2.1 Representation of the rolling process

The set of parameters to represent the rolling process is given by:

),,,,,( q
orkNeuralNetw

fboi T(P)ytt,hh  →µ (4)

Figure 1, shows the structure to represent the rolling process by an ANN.



Figure 1- Structure to represent the rolling process by an ANN

The representation has 6 entries, generating 729 training sets, assuming that each entry
may have three different values. Alexander's model (Alexander, 1972) was used to generate a
database for the cold rolling mill process.

2.2 Representation of the rolling mill operation.

The set of parameters to represent the rolling mill operation is given by:

),,,,,( wo
orkNeuralNetw

fbi P(h)yttg,h  →µ (5)

Note that the rolling load ( wP ), the strip width (W) and the roll gap (g) values are related

to output thickness through the elastic equation of the mill, Eq. (6).

M

P.W
g+h f = (6)

Figure 2 shows the structure to represent the rolling mill operation by an ANN.

Figure 2- Structure to represent the rolling mill operation by an ANN

Observe that the representation of the rolling mill operation considers an ANN trained in
the neighborhood of an operation point, assuming the mill modulus and strip width as
constants.

Observe that the representation of the rolling mill operation considers the roll gap as an
entry. This entry is calculated through Eq. (6), considering the mill modulus and strip width
as constants for all the training sets. This constitutes a limitation for the representation, since
the strip width is a dependent variable.

The introduction of the strip width as a new entry in the ANN, results in 7 entries,
generating 2187 training sets, assuming that each entry may adopt three different values.
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When some deviation from the operation point (not considered in the network training) is
expected, an adaptive configuration may be used in order to operate the on-line
representation. In this case, the neural network will remain training, aiming at updating the
weights. Normally, the computational time involved in training an ANN is big and a new
entry can prevent its use in on-line control and supervision systems, if an adaptive structure is
used.

A strategy that permits to consider the strip width as an independent variable represents
the output thickness )( oh as a function of the sensitivity factors: Eqs. (7) and (8).

(8)    

(7)             

 y
y 

 Tq
+

 

 Tq
+t

 t

 Tq
+t

 t

 Tq
+h

 h

 Tq
+h

 h

 Tq
Tq

  y
y 

 P
+

 

 P
+t

t

 P
+t

 t

 P
+h

 h

 P
+h

 h

 P
P

f
f

r
r

f
f

i
i

f

f

r

r

f

f

i

i

∆∆∆∆∆∆=∆

∆∆∆∆∆∆=∆

∂
∂µ

µ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂µ

µ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

As the rolling mill is not perfectly rigid, the outgoing thickness is influenced by the
elastic equation of the rolling mill Eq. (6). Any variation in the roll gap can be expressed as:

M

P.W
g+=h f

∆∆∆ (9)

Combining the Eqs. (7) and (9), the expression to calculate the outgoing thickness, Eq.
(10) can be obtained. This equation requires the calculation of the sensitivity factors.

y}
 y

 P
+

 

 P
+t

 t

 P
+t

 tr

 P
+h

 h

 P
g+

W

M
{

 h

 P
WM

W
h f

f
bi

i

o

o ∆∆∆∆∆∆
−

=∆
∂
∂µ

µ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂   (10)

where ooo h=hh −∆ *

Normally, the sensitivity factors are calculated from equations of difficult analytical
solution, as in Alexander's model. In this paper, the sensitivity factors are calculated through
the differentiation of a neural network. To that aim, the neural network based representation
of the rolling process (Eq. (4)) is used.

In this case, a back-propagation neural network with six inputs (N=6), two outputs (M=2)
and one hidden layer with 13 neurons (2N+1), is used. A sigmoid function was selected as the
activating function.

Generally, the largest effort to train a neural network lies on collecting and pre-
processing the input data. The pre-processing operation consists in the normalization of the
data, in such a way that the inputs and outputs values be within the 0 to 1 range.

The following procedure was adopted to normalize the input data before using it in the
ANN structure:
•  In order to improve convergence of the ANN training process, the normalization interval

[0, 1] was reduced to [0.2, 0.8].
•  The data was normalized through the following formula:
 

 Ln = (Lo - Lmin) / (Lmax - Lmin) (11)
 



 Where Ln is the normalized value, Lo value to normalize, Lmin and Lmax are minimum
and maximum variable values, respectively.

•  Lmin and Lmax were computed as follows:

Lmin = (4 x LimiteInf. - LimiteSup) / 3 (12)
Lmax = (LimiteInf. - 0.8 x Lmin) / 0.2 (13)

3. SENSITIVITY EQUATIONS

In this section, the calculation of the sensitivity factors through the differentiation of a
general neural net, with N entries, M exits and L neurons in the hidden layer, is presented.

The currently used symbols are:

NiUi ,...,0   , =  are the net entries and 10 =U  is a polarization entry

Nif a
i ,...,0   (.) =  are the normalization entry functions and 1(.)0 =af
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,...,1    are product of the weights times entries for the hidden layer.

   ,...,1   )( Mjnetf h
j

o
j =  is the value of the sigmoid function for the exit layer

MjYj ,...,1   , =  are the normalized exits of the net, obtained from the sigmoid function

Mif b
i ,...,1   (.) =  are the denormalization functions of the exits

MiZ i ,...,1   , =  net exits values

Nkee kk ,..,1 min,max =  higher and lower value of the entries

Mkss kk ,..,1 min,max =  higher and lower value of the exits

The procedure to obtain the expressions of the net sensitivity will now be described. Be
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By substituting the corresponding values for the functions (.)(.),(.),(.), hoba ffff , Eq.
(15) is obtained:

[ ]

M1,..,k para

 sminsminsmax
exp1

1

=

+−
+

= − kkkVk
k

Z
(15)



where:
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The sensitivity factors will be calculated from Eq. (17):
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where each term of the sensitivity matrix is calculated in the form:
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Manipulating the derivative term of Eq. (18) and taking into account Eq. (16), the
following expression is obtained:
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By differentiating Eq. (20) and substituting that expression in Eq. (18), the Eq. (20) is
obtained, which allows to calculate the sensitivity factors starting from the net:
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The Eq. (20) provides a linear form of the equation process, in the neighborhood of an
operation point (Ui) and it is valid for small variations in the process parameters. Notice that
the sensitivity factors are calculated directly from the network inputs and the net weights.

4. SIMULATION RESULTS

To asses the performance of the proposed representations, Alexander’s model (Alexander
1972) was used to generate a database for the cold rolling mill process. To obtain the data sets
for ANN training, the parameters variations were chosen as: %8±=ih ; %3±=oh ;

%20±=µ ; %30±=ft ; %30±=bt and %10±=y .Three different values were chosen for

each parameter resulting in 729 training sets.The load rolling was obtained through
Alexander's model and the roll gap by the elastic equations for the rolling mill, Eq. (6).

The nominal values of the parameters for the rolling process and rolling mill operation
were chosen as: hi = 5.0 mm; ho, = 3.6 mm; g = 1.846 mm; µ = 0.12; tf = 9.098 2kgf/mm ;

tb=0.441 2kgf/mm ;
_

y =46.918 2kgf/mm ; W = 500 mm; E=20,400 2kgf/mm ; R = 292.1 mm;

M=500,000 kgf/mm ; P= 875.31tf and 4275.0742.47138.26 ε+=y .
The final weights for the hidden and output layers, with its polarization weight for the

rolling process and rolling mill operation are:
Case 1: Representation of the rolling process
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Figures 3 and 4 compare the results of the operation of the ANN trained with the data
obtained from Alexander's model. The global error was 0.039 after 555.000 iterations.

Figure 3- Comparison between ANN and Alexander's Model (case 1) for Rolling Load



Figure 4- Comparison between ANN and Alexander's Model (case 1) for Rolling Torque

For the nominal operating point, the error in the rolling load was 0.64% and in the rolling
torque 0.90%.

Case 2: Representation of the rolling mill operation
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Figures 5 and 6 compare the results of the operation of the ANN, trained with the data
obtained from Alexander's model. The global error was 0.040 after 330.000 iterations.

Figure 5- Comparison between ANN and Alexander's Model (case 2) for Output Thickness



Figure 6-  Comparison between ANN and Alexander's Model (case 2) for Rolling Load

For the nominal operation point, the error in the output thickness was 0.06% and in the
rolling load 0.23%.

The representation of the rolling mill operation takes into account the strip width as a
dependent variable. Another form, that permits to consider the strip width as an independent
variable is Eq. (10), through the sensitivity factors and the neural network Eq. (4). Table 1
shows the nominal values for the sensitivity factors at the operation point, obtained by
differentiating the neural network previously trained (Eq. (20)). Table 2, shows the output
thickness obtained through the sensitivity factors for perturbations of 1, 3 e 5% in the
parameters. In this case, the output thickness is kept with an error below 0.50%.

Table 1. Sensitivity factors
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Table 2. Output thickness obtained through the sensitivity factors
Var %

ih µ
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ANN

oh
Alexander

|Err|
%

0,0 5,00 0,12 0,441 9,098 46,918 3,600 3,590 0,28

-1,0 4,95 - - - - 3,585 3,572 0,36

+1,0 5,05 - - - - 3,615 3,623 0,22

- 0,119 - - - 3,595 3,588 0,19

- 0,121 - - - 3,605 3,602 0,08

- - 0,436 - - 3,600 3,599 0,03

- - 0,445 - - 3,599 3591 0,22

- - - 9,007 - 3,600 3,597 0,08

- - - 9,189 - 3,599 3,594 0,14

- - - - 46,449 3,584 3,582 0,06

- - - - 47,387 3,616 3,606 0,28

-3,0 4,85 - - - - 3,554 3,519 0,99

+3,0 5,15 - - - - 3,646 3,670 0,65

- 0,116 - - - 3,581 3,580 0,03

- 0,124 - - - 3,619 3,613 0,17

- - 0,428 - - 3,600 3,599 0,03

- - 0,454 - - 3,599 3,591 0,22

Var %

ih µ
bt ft y oh

ANN

oh
Alexander

|Err|
%

- - - 8,825 - 3,601 3,599 0,03

- - - 9,371 - 3,599 3,591 0,22

- - - - 45,510 3,551 3,550 0,03

- - - - 48,26 3,647 3,632 0,41

-5,0 4,75 - - - - 3,524 3,459 1,88

+5,0 5,25 - - - - 3,676 3,723 1,26

- 0,114 - - - 3,571 3,572 0,03

- 0,126 - - - 3,629 3,621 0,22

- - 0,419 - - 3,601 3,598 0,06

- - 0,463 - - 3,599 3,592 0,19

- - - 8,643 - 3,602 3,602 0,00

- - - 9,553 - 3,598 3,589 0,28

- - - - 44,572 3,518 3,530 0,34

- - - - 49,264 3,681 3,659 0,60

-3,0 4,85 0,116 0,428 8,825 45,510 3,487 3,459 0,81

+3,0 5,15 0,124 0,454 9,371 48,326 3,713 3,733 0,54



In Table 2, for perturbations of 1% on the operational parameters, in the output thickness
the minimum error was 0.03% and maximum error was 0.59%. When the deviations in the
parameters increase to 3 and 5%, the error in the calculation of the output thickness is 2%.
This is so because the method of the differentiation of the neural network to obtain the
sensitivity factors  behaves as Taylor's development (Zárate et. al. 1998b).

Notice that the smallest errors are present in the back tension, in the front tension and in
the average yield stress, because the sensitivity factors in these parameters are, in absolute
value, the smallest ones for the chosen operation point, as shown in Table 1.

4. CONCLUSIONS

In this paper two neural network and sensitivity factors based representations for the cold
rolling systems through Alexander's model, were presented. The results show the good
performance of both representations.

The calculated sensitivity factors were valid in the neighborhood of the operation point.
However, it was observed that the results behave satisfactorily, even for large deviations from
the operation point (Table 2). These neural network based representations can be used in on-
line control and supervision systems, since the computational effort of the representation by
neural networks and sensitivity factors is minimum (Zárate et.al. 1998c).
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